The Background on
Background Tasks in .NET 6

Slides up at scottsauber.com scottsauber

* .NET Developers
* In need of running a background task

* What are background tasks/jobs?
* What type of problems are suitable for a background task/job?

* What options are out there?
* |[HostedService
* BackgroundService
* Worker Service
e Hangfire

 Why would | choose one over the other?
* Deep dive into each

* Demos

* Questions

* Know all your options for running background tasks
* Why choose one over another

* Director of Engineering at Lean TECHniques LT
* Co-organizer of lowa .NET User Group

* Friend of Redgate

* Blog at scottsauber.com

NET

User Group

https://www.meetup.com/iadnug/
https://www.red-gate.com/hub/events/friends-of-rg/friend/ScottSauber
http://www.scottsauber.com/

* Cron jobs
* Process messages from a queue every X minutes
Clean up database or file system every X minutes
Send email notification every X minutes under certain circumstances
Refresh cache every X minutes
Check for updates to database every X minutes and push updates via SignalR

e Perform some CPU intensive work asynchronously
* Eventual consistency
* Re-train ML datasets

* IHostedService

* BackgroundService
* WorkerService

* Hangfire

* Cloud options

These options are
kind of like
baking cookies

|HostedService

“Make Your Own Recipe”
(Cookie Jar Included)

* Lets you host a background job inside an ASP.NET Core App
 ASP.NET Core app is your cookie jar

* Interface with StartAsync and StopAsync
* Raw, fundamental building block for other options
e Register via dependency injection and services.AddHostedService<T>

° RegiSter Wlth DI services.AddHostedService<{HostedServiceExample>();
* StopAsync’s cancellation token has 5 seconds to shutdown gracefully
e StopAsync might not be called if the app shuts down unexpectedly

How does an IHostedService work?

[Ho&ﬂgg&tzzar;gﬂgns] [Host] [IHostLifetime] [IHostedService] |'IHostAppI|'cati0nLifetime] [IServer]

EventHandlers are
registered to capture
SIGTERM and CTRL-C

StartAsync() - E
»| [WaitForStartAsync() !

+= OnProcessExit
+= OnCancelKeyPress

D

N\
S

+ StartAsync() > GenericWebHostService

: is started as a standard

| StartAsync() - background service

E > Kestrel starts

' listening for

' StartAsync -

E ync() p StartAsync() >|i| HTTP requests
E aniFyQ+a r'had()

mm e e e -—-- ----.l
Y

Image Credit: Andrew Lock scottsauber

https://andrewlock.net/controlling-ihostedservice-execution-order-in-aspnetcore-3/

e StartAsync blocks the rest of your app from starting

* Push blocking long-running work out of StartAsync
* This goes for BackgroundService later

ask 5StartAsync(CancellationToken cancellationToken) wublic async Task StartAsync(CancellationToken cancellationToken)

LongRunningThingAsync(cancellationToken); await LongRunningThingAsync(cancellationToken);

"N Task.CompletedTask;

 UNLESS, you truly don’t want your app to boot until this finishes
* i.e. Database Migrations

* You will implicitly use it with BackgroundService and Worker Services

* You need full control over Starting and Stopping
* AND will not use the base BackgroundService implementation

* Should be using BackgroundService or WorkerService 95%+ of the time
* Other reasons will be the same as BackgroundService (next)

BackgroundService

“Follow The Recipe”
(Cookie Jar Included)

* Lets you host a background job inside an ASP.NET Core App
 ASP.NET Core app is your cookie jar

* Abstract class, implements IHostedService
* Exposes ExecuteAsync abstract method
* Handles Starting and Stopping

o RegiSter W|th Dl services.AddHostedService<BackgroundserviceExample>();
* Exposes ExecuteAsync abstract method
* Can still override StartAsync and StopAsync

BackgroundService : IHostedService, IDisposable
Task _executingTask;

CancellationTokenSource _stoppingCts = CancellationTokenSource();

Task ExecuteAsync(CancellationToken stoppingToken);

Task StartAsync(CancellationToken cancellationToken)

_executingTask = ExecuteAsync(_stoppingCts.Token);

if (_executingTask.IsCompleted)

{

_executingTask;

Task.CompletedTask;

Task StopAsync(CancellationToken cancellationToken)

(_executingTask ==

_stoppingCts.Cancel();

Task.WhenAny (_executingTask, Task.Delay(Timeout.Infinite, cancellationToken));

Dispose()

_stoppingCts.Cancel();

* Need a simple background task runner
* Either as part of your ASP.NET Core application or by itself

* Less gotchas than IHostedService
e Can’t accidentally prevent app from booting unless override StartAsync
* Handles cancellations

 Want an ASP.NET Core endpoint to health check your background task
* Instead of WorkerServices

* Too much co-location with your app/API can get unruly and outweigh
the convenience of co-location

* |t Depends

 Scaling out can be a problem if your code isn’t idempotent
* Fix by making code idempotent or not allowing scale out

WorkerService

“Follow The Recipe”
(BYO Cookie Jar)

* Enhanced .NET Console App template
* dotnet new worker —o my-custom-worker

* Allows you to have an IHost
* Configuration, Dependency Injection, Logging, etc.

* Registers a Worker class as a HostedService

* Does not take an opinion on how to host console app
* No cookie jar
* Console app called from scheduler
* Windows Service
e systemd

* Project Sdk of Microsoft.NET.Sdk.Worker
* PackageReference to Microsoft.Extensions.Hosting

<Project Sdk="Microsoft.NET.Sdk.Worker">

<PropertyGroup>
<TargetFramework>neté.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.Extensions.Hosting" Version="6.0.1" />
<PackageReference Include="Microsoft.Extensions.Hosting.Systemd" Version="6.0.0" />
<PackageReference Include="Microsoft.Extensions.Hosting.WindowsServices" Version="6.0.0" />
</ItemGroup>

<ItemGroup>

<ProjectReference Include="..\Shared\Shared.csproj" />

</ItemGroup>
</Project>

e Scheduler calls Console App

* Windows Scheduled Tasks, k8s cron jobs, Azure Logic Apps, AWS Scheduled
Tasks, GCP Cloud Scheduler

* Windows Service or Systemd (Windows or Linux)

* Want an out-of-proc way of running background tasks

* Prefer hosting background services outside of a web app
* Avoid app pool recycles

* Natural migration for a full .NET framework Windows Service

* Prefer deploying as a web app
* Want to co-locate with existing web app/API
* Want a healthcheck endpoint

Hangtire

“Buy pre-packaged cookies”

* Full featured library for running jobs in ASP.NET Core
* Free for commercial use but paid if you want support (5500-S4500/yr)

* Comes with Ul for monitoring and history
e Supports Cron and ad-hoc running of jobs
 Allows for continuations

* Automatic retries

e Supports concurrency limiting

* Persists job state to database

 Serializes method call and all arguments

* Creates background job based on that information
e Saves job to persistent storage

e Starts background job if immediate

* Want to host jobs in ASP.NET Core

* Need features Hangfire offers

* Don’t want to write plumbing code
» Ok with relying on a 3" party library

* Do not want to host jobs in ASP.NET Core

* Have basic needs and do not need Hangfire’s features
* Do not want to rely on 3 party library

* More control over what happens

* Azure Functions

* Azure WeblJobs

* AWS Lambdas

* GCP Cloud Scheduler + Cloud Functions

* Didn’t cover these to avoid cloud specific

 Awareness to all the options available to you
* More information to make the best decision for you and your company

Resources

* https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/multi-container-microservice-
net-applications/background-tasks-with-ihostedservice

e https://www.hangfire.io/

* https://app.pluralsight.com/library/courses/building-aspnet-core-
hosted-services-net-core-worker-services/

* This slide deck

scottsauber

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://www.hangfire.io/
https://app.pluralsight.com/library/courses/building-aspnet-core-hosted-services-net-core-worker-services/

Questions?

Slides up at scottsauber.com scottsauber

Thanks!

Slides up at scottsauber.com scottsauber

