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Audience

• Frontend Developers

• Familiar with testing

• Interested in learning TDD
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Agenda

• What is TDD?

• Why TDD? 

• Tools you can use

• What do I test?

• Live Demos
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Goals

• Learn “best practices*” for writing frontend tests

• Learn how to TDD with React

* Synonym for “Just My Opinions” and I’ll probably find a way I like better in the future scottsauber



Who am I? 

• Director of Engineering at Lean TECHniques

• Co-organizer of Iowa .NET User Group 

• Microsoft MVP

• Friend of Redgate

• Blog at scottsauber.com

• Used React, Blazor, or Angular last 7 years
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https://www.meetup.com/iadnug/
https://www.red-gate.com/hub/events/friends-of-rg/friend/ScottSauber
http://www.scottsauber.com/


Why do we write tests?

• We want confidence our application works

• Minimize manual verification

• Document behavior through tests
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How to TDD?

1. Think

2. Write a test that describes the behavior you want to see

3. Run the test and watch it fail for the right reason

4. Write code to make it pass

5. Refactor

6. Repeat
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How to TDD?



Why Test Driven Development?

• It’s a disciplined way of working

• A great way to focus

• A great way to get feedback on if your code and design sucks

• A great way to facilitate pair programming

• Often leads to very little time in the debugger

• Oh yeah… and the regression tests are nice too
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What is NOT TDD?

• TDD is not a synonym for writing tests

• TDD is not writing ALL the tests up front

• TDD does not mean no bugs ever (just less)

• TDD zealots are harmful
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Applying TDD
to React



Introduction to Tools

• Jest

• @testing-library/react
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Jest

• Test framework

• Zero config

• Assertions

• Mocking

• Watch
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Jest
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React Testing Library

• @testing-library/react is the package

• Utilities for testing React

• Encourages behavior-style tests

• Encourages avoiding testing implementation details

• DOM queries that promote accessibility

• Promotes deep rendering
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React Testing Library
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Demo



What should I test?

• Behavior

• Not that CSS classes exist or any other attributes directly exist

• Behavior

• If I can delete code that breaks your app, but your tests don’t – that’s a problem

• If my tests break but my application isn’t - that’s a problem

• Don’t use snapshots… (mostly)

• Snapshots don’t capture desired behavior

• Too many implementation details (i.e. classes, DOM nodes, etc.)

• Only use snapshots when doing a total refactor but output should be the same

• Then delete the test scottsauber



“The more your tests resemble the 
way your software is used the more 

confidence they can give you.”

Kent C Dodds
react-testing-library creator



How do I structure tests?

• Avoid lots of describes

• Avoid lots of beforeEach nested in describes

• Avoid a top-level describe for the component you’re testing

• You already know ^ by the file you’re in

• Put tests next to the file they’re testing

• High cohesion
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Live Coding!



How can I get started with TDD?

• When you get a bug report coming in

• Write a failing test that proves the bug exists

• Make it pass
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But I don’t 
have time!



Why?



My boss 
won’t let me!



What about 
this person?



You don’t get better
at TDD

by NOT doing TDD



Takeaways

• Why you should TDD

• How to test React

• What to test in React

• How to get started TDDing React
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Resources

• TDD By Example by Kent Beck

• Write Tests blog post by Kent C Dodds

• https://github.com/scottsauber/talks 

• This slide deck
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https://kentcdodds.com/blog/write-tests
https://github.com/scottsauber/talks


Questions?
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Thanks!
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