
Test Driven Development
 For Frontends

Slides up at scottsauber.com scottsauber

Audience

• Frontend Developers

• Familiar with testing

• Interested in learning TDD

scottsauber

Agenda

• What is TDD?

• Why TDD?

• Tools you can use

• What do I test?

• Live Demos

scottsauber

Goals

• Learn “best practices*” for writing frontend tests

• Learn how to TDD with React

* Synonym for “Just My Opinions” and I’ll probably find a way I like better in the future scottsauber

Who am I?

• Director of Engineering at Lean TECHniques

• Co-organizer of Iowa .NET User Group

• Microsoft MVP

• Friend of Redgate

• Blog at scottsauber.com

• Used React, Blazor, or Angular last 7 years

scottsauber

https://www.meetup.com/iadnug/
https://www.red-gate.com/hub/events/friends-of-rg/friend/ScottSauber
http://www.scottsauber.com/

Why do we write tests?

• We want confidence our application works

• Minimize manual verification

• Document behavior through tests

scottsauber

How to TDD?

1. Think

2. Write a test that describes the behavior you want to see

3. Run the test and watch it fail for the right reason

4. Write code to make it pass

5. Refactor

6. Repeat

scottsauber

How to TDD?

Why Test Driven Development?

• It’s a disciplined way of working

• A great way to focus

• A great way to get feedback on if your code and design sucks

• A great way to facilitate pair programming

• Often leads to very little time in the debugger

• Oh yeah… and the regression tests are nice too

scottsauber

What is NOT TDD?

• TDD is not a synonym for writing tests

• TDD is not writing ALL the tests up front

• TDD does not mean no bugs ever (just less)

• TDD zealots are harmful

scottsauber

Applying TDD
to React

Introduction to Tools

• Jest

• @testing-library/react

scottsauber

Jest

• Test framework

• Zero config

• Assertions

• Mocking

• Watch

scottsauber

Jest

scottsauber

React Testing Library

• @testing-library/react is the package

• Utilities for testing React

• Encourages behavior-style tests

• Encourages avoiding testing implementation details

• DOM queries that promote accessibility

• Promotes deep rendering

scottsauber

React Testing Library

scottsauber

Demo

What should I test?

• Behavior

• Not that CSS classes exist or any other attributes directly exist

• Behavior

• If I can delete code that breaks your app, but your tests don’t – that’s a problem

• If my tests break but my application isn’t - that’s a problem

• Don’t use snapshots… (mostly)

• Snapshots don’t capture desired behavior

• Too many implementation details (i.e. classes, DOM nodes, etc.)

• Only use snapshots when doing a total refactor but output should be the same

• Then delete the test scottsauber

“The more your tests resemble the
way your software is used the more

confidence they can give you.”

Kent C Dodds
react-testing-library creator

How do I structure tests?

• Avoid lots of describes

• Avoid lots of beforeEach nested in describes

• Avoid a top-level describe for the component you’re testing

• You already know ^ by the file you’re in

• Put tests next to the file they’re testing

• High cohesion

scottsauber

Live Coding!

How can I get started with TDD?

• When you get a bug report coming in

• Write a failing test that proves the bug exists

• Make it pass

scottsauber

But I don’t
have time!

Why?

My boss
won’t let me!

What about
this person?

You don’t get better
at TDD

by NOT doing TDD

Takeaways

• Why you should TDD

• How to test React

• What to test in React

• How to get started TDDing React

scottsauber

Resources

• TDD By Example by Kent Beck

• Write Tests blog post by Kent C Dodds

• https://github.com/scottsauber/talks

• This slide deck

scottsauber

https://kentcdodds.com/blog/write-tests
https://github.com/scottsauber/talks

Questions?

scottsauberSlides up at scottsauber.com

Thanks!

scottsauberSlides up at scottsauber.com

	Slide 1: Test Driven Development For Frontends
	Slide 2: Audience
	Slide 3: Agenda
	Slide 4: Goals
	Slide 5: Who am I?
	Slide 6: Why do we write tests?
	Slide 7: How to TDD?
	Slide 8: How to TDD?
	Slide 9: Why Test Driven Development?
	Slide 10: What is NOT TDD?
	Slide 11: Applying TDD to React
	Slide 12: Introduction to Tools
	Slide 13: Jest
	Slide 14: Jest
	Slide 15: React Testing Library
	Slide 16: React Testing Library
	Slide 17: Demo
	Slide 18: What should I test?
	Slide 19: “The more your tests resemble the way your software is used the more confidence they can give you.”
	Slide 20: How do I structure tests?
	Slide 21: Live Coding!
	Slide 22: How can I get started with TDD?
	Slide 23: But I don’t have time!
	Slide 24: Why?
	Slide 25: My boss won’t let me!
	Slide 26: What about this person?
	Slide 27: You don’t get better at TDD by NOT doing TDD
	Slide 28: Takeaways
	Slide 29: Resources
	Slide 30: Questions?
	Slide 31: Thanks!

