HTTP Security Headers

You Need To Have
On Your Web Apps

Slides up at scottsauber.com

 Anyone with a web app

* What are HTTP Security Headers?
 Why do they matter?

* HSTS, XFO, XSS, CSP, CTO, RH, FP, PP
 What are they
 What do they do
* Demo
* Impact on existing apps

* Expose you to security headers that are out there
 Why they are needed
* Write down ones you need to look into when you’re back at work

* Director of Engineering at Lean TECHniques | LT I

* Co-organizer of lowa .NET User Group
* Microsoft MVP

* Friend of Redgate

* Blog at scottsauber.com . N ET

User Group

* Not a security expert... but...

https://leantechniques.com/
https://www.meetup.com/iadnug/
https://mvp.microsoft.com/en-US/mvp/profile/13569306-1e9e-ed11-83ff-000d3a5600fa
https://www.red-gate.com/hub/events/friends-of-rg/friend/ScottSauber
http://www.scottsauber.com/

* Allows both the client and server to pass additional data along to the
request or response to exchange information and inform the other

party.
* Request header examples:

* Cookies
e Accept-language: en-us

* Response header examples:
* Date
* Content-type: text/html or application/json

» Security-related headers G———————————————

* Response headers that the server responds with to instruct the
browser what security rules to enforce when it handles your website’s
content.

* Key value pairs

* In general, the more security headers you opt-in to sending, the more
secure your website is.

* Most security headers come with multiple options you can configure
to tweak the behavior to what you want.

[w ﬂ Elements
® 0 ™Y Q

Console

View:

Sources Network Performance Memory Application Security Audits React

i= ™= U Group by fr [J preserve log [J Disable cache | [J Offline Online ¥

| f | [0} Hide data URLs XHR Js CS Media Font Doc WS Manifest Other
10000 ms 20000 ms 30000 ms 40000 ms 50000 ms 60000 ms 70000 ms 80000 ms 90000 ms 100000 ms 110000 ms
J .'s) .- . " -
Name x Preview Response Cookies Timing
| facebook.com » General

|| www.facebook.co
.| MQadQz)Y5-0.css
| | BowZdYholBhjs
.| CZDXNrhcZNR js
.| 26UbA3YYKtW. js
|| Iwpoemijeclb.css
| 01ucC237c08js
|| zmociAY-gww.js
.| iXJARbyUKEH.css
| jlLuFtmbjCq.css
| IVSUITSC1cY.css
|| foTwljApvar.css
.| hKemnd-vLZZ js
. | ongZGhrl48M.css
| ewdB3k4d_m3.css
.| R-VbjivSuSV.js

.| nzraUlbnMyl js
|| u2_4BeXCIEgjs

[l e72LA00inlic

-

495 / 536 requests | 5.9 MB /6.0 ...

¥ Response Headers

cache-control: private, no-cache, no-store, must-revalidate

content-encoding: br

120000 ms 130000 ms

content-security-policy: default-src * data: blob:;script-src *.facebook.com *.fbcdn.net *.facebook.net *.google-analytics.com *.virtualearth.net *.google.com 127.8.@.1:* *.spotilocal.com:* 'unsafe-inline' 'unsafe-eval' *.atla

olutions.com blob: data: 'self';style-src data: blob: 'unsafe-inline' *;connect-src *.facebook.com facebook.com *.fbcdn.net *.facebook.net *.spotilocal.com:* wss://*.facebook.com:* https://fb.scanandcleanlocal.com:* *.atla

olutions.com attachment.fbsbx.com ws://localhost:* blob: *.cdninstagram.com 'self' chrome-extension://boadgeojelhgndaghljhdicfkmllpafd chrome-extension://dliochdbjfkdbacpmhlcpmleaejidimm;

content-type: text/html; charset="utf-8"

date: Thu, 15 Nov 2018 21:15:41 GMT

expect-ct: max-age=86400, report-uri="http://reports.fb.com/expectct/"
expires: Sat, @1 Jan 2000 80:00:00 GMT

pragma: no-cache

status: 200

strict-transport-security: max-age=15552000; preload

vary: Accept-Encoding

x-content-type-options: nosniff

x-fb-debug: KkqYDI+1C5qzp2+HO1/yAWcb1I2/t3H/DmM51X5rIVZvcB+AINOXNFaDftUb35k0TnnddCUT/bAizUfnv/EByg==
x-frame-options: DENY

x-xss-protection: @

scottsauber

* |t allows websites to tell web browsers to only request this site over HTTPS,
not over HTTP.

* Prevents some classes of man-in-the-middle (MITM) attacks.

Browser Server
1. User types in something.com >

- 2. Server redirects to https://something.com

b

&

3. Browser redirects to https://something.com———»

- 4. Server returns page for https://something.com

Browser Server
1. User types in something.com >

- 2. Server redirects to https://something.com

b

&

3. Browser redirects to https://something.com———»

- 4. Server returns page for https://something.com

What’s the issue?

Browser

T

Server

om

r.

scottsauber

Browser Man-In-The-Middle Server

r.

| 4 m ——1. User typemnethingiom—»

J— <«——2. Malicious content is served

Browser Man-In-The-Middle Server

——1. User types in something.com—

0§

2. Browser does internal
redirect to https://something.com

3. Browser requests https://something.com > @

I
4. Server returns page for httﬁs://something.com—

e
.‘

strict-transport-security: [max-age=31536000} |includeSubDomains}

max-age

 The number of seconds the browser should enforce HSTS. 31,536,000 (1 year)
is really common. Adds your site to its internal list for this # of seconds.

includeSubDomains
* Apply the HSTS policy to all subdomains.

preload

* |Instructs the browser to be on the preload list... more on that in the next
slide.

max-age is required. The other two are not.

* List maintained by Google, but used by all browsers.

* If you ARE NOT on the list, then the first HTTP request will 301 and
opens up for chance of MITM

* If you ARE on this list, then the HTTP request will 307 internal
redirect, not 301, even if you've never visited the site before

* Guarantees no chance of basic MITM attack.
* Submit your domain to the list here: https://hstspreload.org/

* Add the preload option to your header to confirm your submission.

https://hstspreload.org/

HSTS
Demo

* You probably don’t want this running when running locally on
localhost... unless every website you run locally is HTTPS

e HTTP and HTTPS often listen on different ports like localhost:5000 for
HTTP and localhost:5001 for HTTPS.

* If running for localhost:5000 it will redirect to https://localhost:5000 which
will not bind

https://localhost:5000/

* |s everything really HTTPS?
e Subdomains

* If you’re planning on going from HTTPS to HTTP in the future for some
reason

* |IDK why though

* A good idea even if your site is internal
* Network topology may change
* Perception to users thanks to Chrome

® Not secure | www.jiiil).com

HSTS
Questions

* Used to tell a browser whether or not a page should be rendered in a frame
or iframe.

* Prevents click-jacking attacks.

x-frame-options:| DENY

* DENY

* Prevents any domain from framing your page. This is the most secure.

* SAMEORIGIN

* Only allows framing from the same domain.

* ALLOW-FROM https://sitel.com

* Let’s you specify a single site that can frame your page.

XFO
Demo

* Do you know which sites should be iframing your app?
* | imagine most could just do DENY or at least SAMEORIGIN

XFO
Questions

A vulnerability in a trusted website where malicious scripts can be injected.

XSS can be used to harvest cookies, tokens, etc. since the script that is loaded
appears to be legit.

Often it comes from input from the user that is not validated or encoded and then
re-displaying that to the user.

Examples:

* Taking input from user, save it in a DB and others can see (Twitter, Facebook, etc.)
e “Contact Us” or “Feedback” form on your page

* Can you put in <script>//something malicious here</script> and does it get loaded by your email
client?

XSS
Demo

* Most modern frameworks help you out here.

* ASP.NET Core for instance, | have to call Html.Raw() since it encodes
by default.

* React escapes non-props characters by default

XSS
Questions

e Can be prevented with Content-Security-Policy (CSP)
* Among other attacks not just XSS

e Old X-XSS-Protection security header is no longer honored by any
major browser
* Edge in 2018
* Chrome in 2019

https://www.packetlabs.net/browsers-dropping-xss-protection/
https://www.packetlabs.net/browsers-dropping-xss-protection/

* Gives the browser an allowlist of sources to load static resources like JS, CSS,
images, etc. from. This allowlist can specify how the resource is loaded (i.e.
disabling inline scripts) and where the resource can be loaded from.

* |t can reduce or even eliminate the ability for XSS to occur.
 Also limits your attack surface of other kinds of attacks (more later).

content-security-policy: www.google-analytics.com www.google.com

e script-src = the content type you are configuring
e self = the domain the page is being served on
* The rest are other domains that are allowed to load scripts from

e Other values:

* unsafe-inline would mean allowing <script> tags or inline event handlers like
<button onclick="clickEvent”>

* none means block any use of this content type

e report-uri = where to send JSON payload with violation information

* In general, the more you allow, the greater your XSS risk.

* Not allowing inline scripts is one of the biggest wins if you can
manage it.

* There are other ones just like script-src that behave similarly such as:
 style-src
* media-src
* frame-src
* font-src
* And more

* All take in domains to allow
e unsafe-inline also works with styles

* none works with all
* j.e. if you want no one to frame your content

CSP
Demo

* HUGE

* This is an allowlist

* You must know what your app is doing (inline scripts/styles or not),
where it’s loading from (CDN’s, other sources, or not), etc.

* Configuring this wrong will break your app.

* Compromise

» Set to report only (via Content-Security-Policy-Report-Only instead of
Content-Security-Policy), collect data and what your app does, and tweak CSP
to that accordingly after a certain period of time.

 Start converting inline scripts and the like.

* CSP can override the need for other headers

* frame-ancestors ‘none’ means no one can embed the pagein a
frame/iframe.
* This eliminates the need for X-Frame-Options: DENY

* However, auditors probably still want to see it

CSP
Questions

Tells a browser to not “sniff” the response and try and determine what’s in
the response. Instead, look at the content-type header and render it
according to that. So if it says it’s text/plain, render it as text/plain

Prevents unexpected execution from what the server thinks the response is.
Especially important if you take uploads from a user and re-display them.

Someone may upload a .txt file, but it’s really JavaScript and without this
option set, the browser may execute the JavaScript.

x-content-type-options: nosniff

* nosniff

* Does not have the browser sniff the contents of the response to try and
determine what to display

* |nstead, it just looks at the content-type header and renders it as that.

* VVery minimal

* Note: most modern browsers will not sniff by default now.
* |E in compatibility view will still sniff

e Still shows up on audits

XCTO
Questions

* When a link is clicked, the browser will send the previous page’s URL
in the Referer Request Header. Allows the server to do something
with that data.

* Useful for tracking a user’s flow through an app
* Yes it’s misspelled
* Yes that’s actually how it shows up in the browser

’'ve seen this on my blog

Stats for 2020

Referrers

Referrer

L1 Search Enginss
github.com
forums.asp.net
codeopinion.com

ayende.com

¢ < <€ < < KL

testing-library.com

ﬂ Twitter

WordPress Android App

ecosia.org

< < &

blog.georgekosmidis.net

WView all

Views
94142
1,385
1372
765
240
214
176
173
154

114

...and even JIRA/Confluence/OWA
2 et I o/ < —

7

(7 IR =<h/entivy-famevor-core/ o ——

.

[/ EEEEssues/8879 _

|'_,7' kb._/pages/viewpage;action?pageld=17694924 —
7 I - - (|ucnce/display/PLATTFORM/Monitoring —
2 jira | oo vse/HosD-1080 —

|'_|7' scottsauber.com/2017/04/03/adding-global-error-handling-and-logging-in-asp-net-core/
7 I >

-

\/ evernote.com
9|

|'_,7' confluence/display/EX/Health+Checks —
|-_,7'-hipchat.com/chat/room/4001051 —

e Tells a browser what should be sent in the Referer header

* It helps protect the identity of the source of a page’s visit.

referrer-policy: no-referrer

no-referrer
» Referer header is omitted entirely. Most secure.

origin
* Only send the domain (i.e. sends example.com instead of
example.com/index.html)

same-origin
* Only send when going to the same domain

And more

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

RP Impact of Retrofitting to Existing App

* Minimal with the right config

3y scottsauber

RP
Questions

 Tells a browser to allow or deny the use of browser features, and allowing
granularity of being able to specify specific domains

* Allows you to restrict what your own app can do
* In case of a XSS vulnerability

 Allows you to restrict what 3" party code can do
* Block geolocation, camera, microphone, etc.

* Limited browser support — rename coming to “Permissions Policy”

Feature-Policy Is Experimental

. Chrome N .
: : for Safarion®™ Samsung -
Edge Safari Firefox Opera IE Android i0S Internet Opera Mini

He0-73 | 12-18 4-7.4

74-87 79-87 | 3.1-11 3.2-11.2 Ig3.2-10.1

8-116 8-116 ﬁ.1-16.6 3-16.6f 11.1-21

117 117 : 17.0 22 “

18-120 J-TP §118-120 17.1

feature-policy: [camerafl'self'f geolocation 'none'

* The feature you are locking down
* camera, geolocation, microphone, payment, autoplay, etc.

 The allow list of who can use this feature
o X
e self
®* None
* https://example.com

FP
Demo

* Pretty big
* Know what your site is doing

permissiuns-pﬂlicy: self "https://google.com™), geolocation()

feature-policy: camera 'self' https:/google.com; geolocation 'none’

* Same idea as Feature-Policy but slightly different syntax

* The feature you are locking down

* The allow list of who can use this feature

* PP will (likely) replace FP, but it has almost zero support today unlike FP

Permissions-Policy is a Working Draft

Chrome N
IE for Safarion™ Samsung

Android 1I0S Internet

*
Chrome Edge Safari Firefox Opera

*
Opera Mini

[
1 oo Fz | o [P

FP/PP
Questions

How do | test my website?

* https://securityheaders.com

* Run by security expert Scott Helme

scottsauber

https://securityheaders.com/
https://twitter.com/Scott_Helme

SecurityHeaders.com

Security Headers Home About
0 L]

Sponsored by . PrObEIV

Scan your site now

+ Hide results v Follow redirects

Grand Totals Recent Scans Hall of Fame Hall of Shame

A+ 1,651,153 A F
A 17,876,433 A F
3,976,248 A F

4,463,734 o E

17,963,932 A F

E 7,461,981 A F
F 88,398,562 A F
R 24,842,722 A F
Total 166,634,765 A F

SecurityHeaders.com

Security Report Summary

Site: https://www.facebook.com/
IP Address: 2a03:2880:f131:83:face:b00c:0:25de
Report Time: 03 Oct 2023 03:50:46 UTC

« Content-Security-Policy } ¥ Permissions-Policy
Headers: « X-Content-Type-Options |} ¥ X-Frame-Options] « Strict-Transport-Security

X Referrer-Policy

Warning: Grade capped at A, please see warnings below.

Advanced: Great grade! Perform a deeper security analysis of your website
and APIs:

SecurityHeaders.com

Missing Headers

Referrer Policy is a new header that allows a site to control how much information the browser includes with navigations away from a document and

Referrer-Poli
- should be set by all sites.

Permissions-Policy Permissions Policy is a new header that allows a site to control which features and APIs can be used in the browser.

Warnings

This policy contains "unsafe-inline’ which is dangerous in the script-src directive. This policy contains ‘unsafe-eval® which is dangerous in the script-src

Content-Security-Poli
= = directive. This policy contains 'unsafe-inline' which is dangerous in the style-src directive.

Upcoming Headers

Expect-CT Expect-CT allows a site to determine if they are ready for the upcoming Chrome requirements and/or enforce their CT policy.
Cross-Origin-Embedder-Policy Cross-Origin Embedder Policy allows a site to prevent assets being loaded that do not grant permission to load them via CORS or CORP.
Cross-Origin-Opener-Policy Cross-Origin Opener Policy allows a site to opt-in to Cross-Origin Isolation in the browser.

Cross-Origin-Resource-Policy Cross-Origin Resource Policy allows a resource owner to specify who can load the resource.

SecurityHeaders.com

Additional Information

X-Frame-Options

X-XS55-Protection

Strict-Transport-Security

content-security-policy

X-Content-Type-Options

X-Frame-Options tells the browser whether you want to allow your site to be framed or not. By preventing a browser from framing your site you can
defend against attacks like clickjacking.

H-XS5-Protection sets the configuration for the X55 Auditor built into older browsers. The recommended value was "X-X55-Protection: 1; mode=block™
but you should now look at Content Security Policy instead.

HTTP Strict Transport Security is an excellent feature to support on your site and strengthens your implementation of TLS by getting the User Agent
to enforce the use of HTTPS.

Content Security Policy is an effective measure to protect your site from X55 attacks. By whitelisting sources of approved content, you can prevent the
browser from loading malicious assets. Analyse this policy in more detail. You can sign up for a free account on Report URI to collect reports about
problems on your site.

X-Content-Type-Options stops a browser from trying to MIME-sniff the content type and forces it to stick with the declared content-type. The only
valid value for this header is "X-Content-Type-Options: nosniff".

* If you're using a WAF (Cloudflare, Incapsula, etc.) they may be adding
these for you.

* Personally, I'd rather let the app add them, avoid vendor-lock in, and
get localhost running as close to prod as possible.

* Sometimes this is hard to do if doing JAM stack
* Lambda@Edge

* HTTP Security Header Awareness

* At least one HTTP Header or option written down to look into at work
* There are more Security Headers out there and more coming

e SecurityHeaders.com

* The web is a scary place

E: r .
Y I'm so ... scared! »i/4

B
.

* https://securityheaders.com/

 MDN: https://developer.mozilla.org/en-US/docs/Web/HTTP/
* Http Security on the left

e Code from demos: https://github.com/scottsauber/talks

 Troy Hunt Pluralsight on Security Headers

* This slide deck is intentionally left detailed

https://securityheaders.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/
https://github.com/scottsauber/talks
https://www.pluralsight.com/courses/browser-security-headers

Questions?

scottsauber

Thanks!

scottsauber

	Slide 1: HTTP Security Headers You Need To Have On Your Web Apps
	Slide 2: Audience
	Slide 3: Agenda
	Slide 4: Goals
	Slide 5: Who am I?
	Slide 6: What are HTTP Headers?
	Slide 7: What are HTTP Security Headers?
	Slide 8
	Slide 9: HTTP Strict Transport Security (HSTS)
	Slide 10: Without HSTS
	Slide 11: What’s the issue?
	Slide 12: What’s the issue?
	Slide 13: What can happen?
	Slide 14: With HSTS
	Slide 15: HSTS Options
	Slide 16: HSTS Preload List
	Slide 17: HSTS Demo
	Slide 18: HSTS Gotchas
	Slide 19: HSTS Impact of Retrofitting on Existing App
	Slide 20: Quick word on HTTPS
	Slide 21: HSTS Questions
	Slide 22: X-Frame-Options (XFO)
	Slide 23: X-Frame-Options (XFO) Options
	Slide 24: XFO Demo
	Slide 25: XFO Impact of Retrofitting to Existing App
	Slide 26: XFO Questions
	Slide 27: Cross-Site Scripting (XSS)
	Slide 28: XSS Demo
	Slide 29: XSS Final Note
	Slide 30: XSS Questions
	Slide 31: Cross-Site Scripting (XSS)
	Slide 32: Content Security Policy (CSP)
	Slide 33: Content Security Policy (CSP) Options
	Slide 34: Content Security Policy (CSP) Options
	Slide 35: Content Security Policy (CSP) Options
	Slide 36: CSP Demo
	Slide 37: CSP Impacting of Retrofitting to Existing App
	Slide 38: Content Security Policy (CSP)
	Slide 39: CSP Questions
	Slide 40: Browser Sniffing Protection (X-Content-Type-Options)
	Slide 41: Browser Sniffing Protection (X-Content-Type-Options)
	Slide 42
	Slide 43: XCTO Questions
	Slide 44: Referer Header background
	Slide 45: I’ve seen this on my blog
	Slide 46: …and even JIRA/Confluence/OWA
	Slide 47: Referrer-Policy
	Slide 48: Referrer-Policy
	Slide 49: RP Impact of Retrofitting to Existing App
	Slide 50: RP Questions
	Slide 51: Feature-Policy (Working Draft)
	Slide 52: Feature-Policy Is Experimental
	Slide 53: Feature-Policy
	Slide 54: FP Demo
	Slide 55: FP Impact of Retrofitting to Existing App
	Slide 56: Permissions-Policy
	Slide 57: Permissions-Policy is a Working Draft
	Slide 58: FP/PP Questions
	Slide 59: How do I test my website?
	Slide 60: SecurityHeaders.com
	Slide 61: SecurityHeaders.com
	Slide 62: SecurityHeaders.com
	Slide 63: SecurityHeaders.com
	Slide 64: Note
	Slide 65: Takeaways
	Slide 66: Resources
	Slide 67: Questions?
	Slide 68: Thanks!

