Which IAC is
Right For Me?

* People who want to know what Infrastructure as Code (IAC) is
* People who want to know why you use IAC

* People who don’t know where to start with IAC
* People new to the cloud

* People who are using IAC but want to know different options

* History
e What is Infrastructure as Code?
* Why should you care?

* All the options that are out there
* Azure Bicep + ARM

e Terraform

* AWS Cloudformation + CDK

e Pulumi

* Understand what and why of IAC
* Understand which IAC fits my environment

e Technical Lead at Integrity
e 13 years in software
e Uses multiple IAC technologies every day

* Director of Engineering at Lean TECHniques
* Microsoft MVP
e Co-organizer of lowa .NET User Group

e Dometrain Author

https://leantechniques.com/
https://mvp.microsoft.com/en-US/mvp/profile/13569306-1e9e-ed11-83ff-000d3a5600fa
https://www.meetup.com/iadnug/
https://dometrain.com/author/scott-sauber/

* On-premises

e Sysadmins maintained the infrastructure (pets)
* Clickety Clack Configuration

* “It works in Dev, but not in Production”

"It Works On
My Machine”

- Every Developer At Least Once

* But then cloud replaced the datacenter (still pets)
e Still Clickety Clack Configuration

e “It still works in Dev, but still not in Production”

* But now we don’t own the hardware!

* Source code that defined provisioning resources that’s configurable
and repeatable across all environments

 Stored in version control

e Declarative — what resources to create, not how to create them
* Deployed via automation (ideally pipeline, but could be local)

* Resource properties can be linked together

* Promotes consistency and standardization

* “It Works On My Machine” goes away

* “It works in Dev, but not in Production” goes away

* Audit trail of who did what and when

* Resources are Transient not Permanent

e Can be deleted and re-created with ease (besides your DB)

e Standing up a new environment is a few lines of code and minutes

* Virtual Machines

* Web Servers

* Databases

* Secret Stores

* Networking

* |JAM Policies

* Monitoring

* DNS

e ...pretty much everything

Okay | get it
...but how?

e Used to configure Azure resources
 Built and maintained by Microsoft
* Domain-specific language (fancy word for custom)

* Provides intellisense, error checking, “whatif,” and orders the resource
creations

* Built on top of Azure Resource Manager (ARM) —don’t use ARM directly
* No state file

resource appservicePlan 'Microsoft.Web/serverfarms@2e22-09-01"

name: ‘asp-myapp-dev’
location: ‘centralus’
sku: {

name: 'S1°

¥

kind: "linux’

~esource appServicePlan 'Microsoft.Web/serverfarms@2022-09-01" =
name: ‘asp-myapp-dev'
kind:

"linux’
location:

'centralus’
sku: {

= I
L
1

name: 'S1°'

v B Create Web App - Microsoft 42 X ar
G -]

=

https://portal.azure.com/#create/Microsoft.\WebSite
Microsoft Azure
Home

L Search resources, services, and docs (G+/)
App Ser

Create Web App

asp-myapp-dev
Operating System *

(®) Linux O Windows
Region * ‘ Central US

azurewshsites.net
Pricing plan

Standard 51 (100 total ACU, 1.75 GB memoary, 1 vCPU)

Demo

* Created by HashiCorp (recently acquired by IBM)

* Domain-specific language

* Configure different clouds (Azure, AWS, GCP, VMware, etc) via Providers
 BUT — can’t take same Terraform and run it on both Azure and AWS

N
Hi

* Maintains state of infrastructure via state file
* Likely the most popular IAC tool in the world
* Recently changed to less permissive BSL license

e Recently acquired by IBM

resource "azurerm_service _plan" "myapp" {
name = "asp-myapp-dev"”
resource_group_nhame "rg-myapp-dev”

location "centralus"”

os_type "Linux"

sku_name "S1”

<)

1

2 name: “asp-myapp-dev’
3 location: ‘centralus’
A sku: {

5 name: 'S1°

: }

kind: 'linux’

name
resource_group_name
location

os_type

sku_name

resource|appservicePlan 'Microsoft.Web/serverfarms@2e22-e9-e1' = {

resource "azurerm_service plan" "myapp"

"asp-myapp-dev"”
"rg-myapp-dev”
"centralus”
"Linux"

"

AWS Cloudformation

» Used to configure AWS resources

* Built and maintained by Amazon
* YAML or JSON files

Resources:
LambdaFunction:
Type: "AWS::Lambda: :Function'
Properties:
FunctionName: mylambda
Handler: index.handler

Runtime: nodejs20.Xx

1
2
3
4
5
6
7
3

MemorySize: 1024

» Used to configure AWS resources
* Built and maintained by Amazon

* You write your language of choice — TypeScript, JavaScript, Python, Java,
C#, or Go

* Built on top of Cloudformation

lambda.ts

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

import * as cdk from 'aws-cdk-1lib';
import { Construct } from 'constructs’;

import * as lambda from 'aws-cdk-1lib/aws-lambda’;

export class CdkHelloWorldStack extends cdk.Stack] {

constructor(scope: Construct, id: string, props?: cdk.StackProps) {

super(scope, id, props);

const myLambdaFunction = new lambda.Function(this,
functionName: 'mylambda’
handler: 'index.handler’,
runtime: lambda.Runtime.NODEJS 20 X,

memorySize: 1024,

})s

'HelloWorldFunction', {

* Created by Pulumi Corporation
* Configure different clouds (Azure, AWS, GCP, etc)

* You write your language of choice — TypeScript, JavaScript, Python, Java,
C#, Go, or Visual Basic (yes really)

* First big player to market with IAC using an existing language

¢ Pulumi

import * as pulumi from '@pulumi/pulumi’;

import * as aws from '@pulumi/aws’;

// Define the Lambda function

const myLambda = new aws.lambda.Function 'myLambda', {
functionName: 'mylambda’,
runtime: aws.lambda.NodelS20dXRuntime,

handler: 'index.handler',

1
2
3
4
5
6
7
3
2

memorySize: 1024

[
®

* Bicep, ARM, Terraform, and Cloudformation are DSL config files

* CDK and Pulumi are libraries of existing languages

e CDK for Terraform is CDK but built on Terraform, supported by Hashicorp
* Configuration popular with Ops-focused teams

e Code popular with Dev-focused teams

* Code leverages existing skills — packages, syntax, autocomplete, etc

Okay | get it
..but which do | pick?

* Do | go first-party with Azure/AWS/my cloud? Or do | go third-party like
Terraform or Pulumi?

* Do | choose a DSL config file based tech or GPL code file based tech?

* Integrate an IAC scanner into your CD pipeline

» Catch security misconfigurations (ie require TLS 1.2, no public S3
buckets, etc) in a Pull Request before it hits your cloud

* Checkov is a free tool, terrascan

0 il -»/workspaces/env@-iac-scanning/Terraform (main) $
Sé rail =»/workspaces/env@-iac-scanning/Terraform (main) $ checkov -f ec2.tf

[secrets framework]: 100%| [[1/1], Current File Scanned=ec2.tftf
[terraform framework]: 100%| [[1/1], Current File Scanned=ec2.tf

ol AN XN
I] N 28] | o 0 IR
N e PEE NS 2NN N

By bridgecrew.io | version: 2.3.187

terraform scan results:

Passed checks: 4, Failed checks: 12, Skipped checks: ©

Check: CKV_AWS_88: "EC2 instance should not have public IP."
PASSED for resource: aws_instance.web_host
File: /ec2.tf:1-32
Guide: https://docs.bridgecrew.io/docs/public_12
: CKV_AWS_25: "Ensure no security groups allow ingress from ©.0.0.0:8 to port 3389"
SED for resource: aws_security group.web-node
File: /ec2.tf:77-115
Guide: https://docs.bridgecrew.io/docs/networking 2
: CKV_AWS_277: "Ensure no security groups allow ingress from ©.0.0.0:0 to port -1"

PASSED for resource: aws_security_group.web-node

File: /ec2.tf:77-115

Guide: https://docs.bridgecrew.io/docs/ensure-aws-security-group-does-not-allow-all-traffic-on-all-ports
¢ CKV2_AWS_5: "Ensure that Security Groups are attached to another resource"

PASSED for resource: aws_security_group.web-node

File: /ec2.tf:77-115

Guide: https://docs.bridgecrew.io/docs/ensure-that-security-groups-are-attached-to-ec2-instances-or-elastic-network-interfaces-enis
: CKV_AWS_46: "Ensure no hard-coded secrets exist in EC2 user data"

FAILED for resource: aws_instance.web_host

File: /ec2.tf:1-32

Guide: https://docs.bridgecrew.io/docs/bc_aws_secrets_1

| resource "aws_instance" "web_host" {

| # ec2 have plain text secrets in user data
| ami = "${var.ami}"

| instance_type = "t2.nano"
!
|
|

vpc_security group_ids = [
"${aws_security_group.web-node.id}"]

* Understand what IAC is and why you should care about it
e Understand which IAC might be a good fit for you
e Use a security scanner for your |IAC

Questions?

	Slide 1: Which IAC is Right For Me?
	Slide 2: Audience
	Slide 3: Agenda
	Slide 4: Goals
	Slide 5: Who is Matt Phillips?
	Slide 6: Who is Scott Sauber?
	Slide 7: In the Before Times
	Slide 8: “It Works On My Machine” - Every Developer At Least Once
	Slide 9: Then…
	Slide 10: What is Infrastructure as Code (IAC)
	Slide 11: Why IAC?
	Slide 12: So what can I create with IAC?
	Slide 13: Okay I get it …but how?
	Slide 14: What is Azure Bicep?
	Slide 15: What is Azure Bicep?
	Slide 16
	Slide 17: Demo
	Slide 18: Terraform
	Slide 19
	Slide 20
	Slide 21: AWS Cloudformation
	Slide 22
	Slide 23: AWS CDK
	Slide 24
	Slide 25: Pulumi
	Slide 26
	Slide 27: Configuration Files vs Code Files
	Slide 28: Okay I get it …but which do I pick?
	Slide 29: Two main decisions
	Slide 30: DevSecOps
	Slide 31
	Slide 32: Takeaways
	Slide 33: Questions?

