
The Background On

Background Tasks in .NET 9

Scott Sauber
Director of Engineering

Lean TECHniques

Level: Introductory

Audience
• .NET Developers

• In need of running a background task

Agenda
• What are background tasks/jobs?

• What type of problems are suitable for a background task/job?

• What options are out there?

– IHostedService

– BackgroundService

– Worker Service

– Hangfire

• Why would I choose one over the other?

• Deep dive into each

• Demos

• Questions

Goals
• Know all your options for running background tasks

• Why choose one over another

Who am I?
• Director of Engineering at Lean TECHniques

• Microsoft MVP

• Dometrain author

• Redgate Community Ambassador

• Co-organizer of Iowa .NET User Group

What problems do background tasks solve?

• Cron jobs

• Perform CPU intensive task async

• Eventual consistency

• Re-train ML datasets

Options
• IHostedService

• BackgroundService

• WorkerService

• Hangfire

• Cloud options

These options are

kind of like baking

cookies

IHostedService
“Make your own recipe”

(Cookie jar included)

What is IHostedService?
• Host background job inside ASP.NET Core

• ASP.NET Core is your cookie jar

• Interface – StartAsync, StopAsync

• Raw fundamental building block

• Register: services.AddHostedService<T>

Demo

How IHostedService works
• Register in DI

• StopAsync cancellation has 5 seconds to shutdown

gracefully

• StopAsync might not get called if app shuts down

unexpectedly

Image Credit: Andrew Lock

https://andrewlock.net/controlling-ihostedservice-execution-order-in-aspnetcore-3/

How IHostedService works
• StartAsync blocks rest of app from starting

• Push blocking long running work out of StartAsync

• UNLESS you truly don’t want your app to boot until

it finishes

• Database Migrations, Cache Refresh, etc

When to use IHostedService
• Implicitly used with BackgroundService and Worker

• Also Kestrel!

• You need full control over Starting/Stopping

• Don’t want to use BackgroundService implementation

When NOT to use IHostedService

• Should be using BackgroundService/Worker 95%+

of the time

• Other reasons same as BackgroundService (next)

BackgroundService
“Follow the recipe”

(Cookie jar included)

What is BackgroundService?

• Host background job inside ASP.NET Core

• ASP.NET Core is your cookie jar

• Abstract class, implements IHostedService

• Exposes ExecuteAsync abstract method

• Handles starting and stopping

• Register: services.AddHostedService<T>

Demo

How BackgroundService works

• Register with DI

• Exposes ExecuteAsync abstract method

• Can still override StartAsync + StopAsync

• Default StartAsync implementation WILL NOT block

app from starting

• Handles cancellations (app stopping)

When to use BackgroundService

• Need simple background task runner as part of

ASP.NET Core application

• Less gotchas than IHostedService

• Want an ASP.NET Core health check endpoint for

your background task (instead of WorkerServices)

When NOT to use BackgroundService

• Too much co-location with app can get unruly

• It Depends

• Scaling out if code isn’t idempotent

• Or you could just make your code idempotent or not

allow scale out (I guess)

WorkerService
“Follow the recipe”

(BYO Cookie Jar)

What is a WorkerService

• Enhanced .NET Console app template

• dotnet new worker –o my-worker

• Gives you IHost

– Configuration, DI, Logging, etc

• Registers Worker class as HostedService

• Does not take opinion on how to host console app

• No cookie jar… scheduler? Windows Service?

systemd?

Demo

How WorkerService works

• Project Sdk of Microsoft.NET.Sdk.Worker

• PackageReference to Microsoft.Extensions.Hosting

How do I host WorkerServices?

• Scheduler calls Console App

• Windows Scheduled Tasks, k8s cron jobs, Azure

Logic Apps, AWS Scheduled Tasks, etc

• Windows Service or system (Windows or Linux)

When to use WorkerService

• Want out-of-proc way of running background tasks

• Prefer hosting background services outside of web

apps

– Avoid app pool recycles

• Natural migration for .NET Framework Windows

Service

When NOT to use WorkerService

• Prefer deploying web apps

• Want to co-locate with existing wen app/API

• Want a health check endpoint

Hangfire
“Buy pre-packaged cookies”

What is Hangfire?

• Full featured library for running jobs in ASP.NET Core

• Free commercial use, but paid for support

• Comes with UI for monitoring and history

• Supports Cron and ad-hoc running of jobs

• Allows for continuations

• Automatic retries

• Support concurrency limiting

• Persists job state to database

Demo

How does Hangfire work?

• Serialize method call and arguments

• Creates background job based on that info

• Saves job to persistent storage

• Starts background job if immediate

When to use Hangfire?

• Want to host jobs in ASP.NET Core

• Need features Hangfire offers

• Don’t want to write plumbing code

• Ok with relying on 3rd party library

When NOT to use Hangfire?

• Do not want to host jobs in ASP.NET Core

• Have basic needs, don’t need Hangfire’s features

• Do not want to rely on 3rd party library

• Want more control over what happens

Cloud options

• Azure Functions with Scheduling timer

• Azure WebJobs

• AWS Lambdas

• GCP Cloud Scheduler + Cloud Functions

• Didn’t cover these to avoid cloud specific

• Everything we covered works with any cloud

Takeaways

• Awareness to all the options available to you

• Awareness of the pro’s and con’s of the options

• Make the best decision for you and your company

Resources

• https://learn.microsoft.com/en-

us/dotnet/architecture/microservices/multi-container-

microservice-net-applications/background-tasks-with-

ihostedservice

• https://hangfire.io

• https://github.com/scottsauber/talks

• This slide deck

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-microservice-net-applications/background-tasks-with-ihostedservice
https://hangfire.io/
https://github.com/scottsauber/talks

Questions?
ssauber@leantechniques.com

@scottsauber on Twitter

@scottsauber.com on Bluesky

• Your feedback is very important to us

• Please take a moment to complete the session
survey found in the mobile app

• Use the QR code or search for “Converge360
Events” in your app store

• Find this session on the Agenda tab

• Click “Session Evaluation”

• Thank you!

Session Survey

	Slide 1
	Slide 2: Audience
	Slide 3: Agenda
	Slide 4: Goals
	Slide 5: Who am I?
	Slide 6: What problems do background tasks solve?
	Slide 7: Options
	Slide 8: These options are kind of like baking cookies
	Slide 9: IHostedService “Make your own recipe” (Cookie jar included)
	Slide 10: What is IHostedService?
	Slide 11: Demo
	Slide 12: How IHostedService works
	Slide 13
	Slide 14: How IHostedService works
	Slide 15
	Slide 16: When to use IHostedService
	Slide 17: When NOT to use IHostedService
	Slide 18: BackgroundService “Follow the recipe” (Cookie jar included)
	Slide 19: What is BackgroundService?
	Slide 20: Demo
	Slide 21: How BackgroundService works
	Slide 22
	Slide 23: When to use BackgroundService
	Slide 24: When NOT to use BackgroundService
	Slide 25: WorkerService “Follow the recipe” (BYO Cookie Jar)
	Slide 26: What is a WorkerService
	Slide 27: Demo
	Slide 28: How WorkerService works
	Slide 29: How do I host WorkerServices?
	Slide 30: When to use WorkerService
	Slide 31: When NOT to use WorkerService
	Slide 32: Hangfire “Buy pre-packaged cookies”
	Slide 33: What is Hangfire?
	Slide 34: Demo
	Slide 35: How does Hangfire work?
	Slide 36: When to use Hangfire?
	Slide 37: When NOT to use Hangfire?
	Slide 38: Cloud options
	Slide 39: Takeaways
	Slide 40: Resources
	Slide 41: Questions? ssauber@leantechniques.com @scottsauber on Twitter @scottsauber.com on Bluesky
	Slide 42: Session Survey

