Practical Al Tooling Tips
For The Too Busy Developer

Slides at scottsauber.com @scottsauber

* Looking for ideas how to best leverage Al

* Been too busy shipping value to pay attention
* This’ll be a 100-200 level talk

* More than just “Al in your IDE”

* This an all day workshop, but we have 60 mins

* Who’s using Al tools? Every day?
* Copilot?

* Claude Code?

* Cursor?

* Windsurf?

* Something else?

 Am | still going to have a job?

* Define all the Al Buzzwords like Context, Instructions, Skills, and
more

* Talk about tools like Copilot and Claude Code
* Show some demos
* Practical Tips about where Al fits and where it doesn’t

* Give you ideas you can start using today
* Where Al tooling is going in the future

* Director of Engineering at Lean TECHniques
* Microsoft MVP
* Dometrain Author

* Redgate Community Ambassador
* Co-organizer of lowa .NET User Group

LT > il NET
. redgate User Group
Dometrqln AMBASSADOR

https://leantechniques.com/
https://leantechniques.com/
https://mvp.microsoft.com/en-us/PublicProfile/5005146?fullName=Scott%20%20Sauber
https://mvp.microsoft.com/en-us/PublicProfile/5005146?fullName=Scott%20%20Sauber
https://dometrain.com/author/scott-sauber/
https://dometrain.com/author/scott-sauber/
https://dometrain.com/author/scott-sauber/
https://www.meetup.com/iadnug/

Am | going to be
out of a job?

* What set teams apart was their commitment to modern engineering
practices and modern work practices — proven by DORA

 Fast feedback

* Working in small batches

* Learning Culture

* Automated Tests

* CI/CD

* Cloud

* Database Automation

* Monitoring and Observability
 And more...

https://dora.dev/

Which ones are still
relevant in an
Al-dominated world?

* What set teams apart was their commitment to modern engineering
practices and modern work practices

* Fast feedback

* Working in small batches
* Learning Culture
* Automated Tests

* CI/CD

* Cloud

* Database Automation

* Monitoring and Observability
* And more...

The Fundamentals
Remain The Same

* Economic Principle of increasing the the efficiency of a resource
actually leads to more use, not less

* More fuel efficient engines, means cheaper travel, which encourages
people to drive, which means more fuel consumption

* Faster Internet speeds has led to more internet usage not less (ie
streaming)

* If history repeats itself - becoming more efficient with creating
software will actually result in MORE software, not less

* Building faster changes the Build vs Buy equation
* We all still have jobs!

“SaaS is Dead.”

‘ 4

3

- Satya Nadella, Microsoft CEO lm

These tools are the
worst they will ever be
today.

Alright let’s talk
Al Tools

* Good practices — move faster at high quality
* Bad practices — move faster at lower quality

* How do you verify your app works? Compile, Tests, Lint, Format. Are
you doing those things already?

* Do you have judgement to know when Al went off the rails?
* Your PR output might 2-10x when using Al correctly

* Do your PRs sit for days without reviewing already?

* Do you rubberstamp PRs?

* You still own the code — not Al

* Engine trained on massive amounts of text to learn patterns of
meaning

e Literally just predicts one token at a time based on probabilities
e Often people just say Models

* Best Models is a misnomer — it’s tradeoffs

e Accuracy vs Cost vs Speed

e Claude Opus 4.5 is the “best” model for one-shotting code in my
experience, but it’s the most expensive and often slow

e Haiku responds very quickly, but isn’t as deep

* The information an LLM is allowed to consider for a request

* LLMs have a limited Context Window

 What makes up Context:

* Conversation History

* Code in your repo

* User Prompt

* |Instructions

* Clearing context is key — when one task is done, start a new chat
* Compacting can also lead to hallucinations

* Unifies LLMs with codebases to provide the most context to get the
best results

* GitHub Copilot (most ubiquitous)

e Claude Code (best Al dev tool)
* Preview Feb ‘25, GA May ‘25

e Cursor (best autocomplete)
* Lots of others
* Best == my opinions and experiences

e Ask

* Answers a question. ChatGPT

* Plan
* Formulates your Prompt to feed to Agent/Edit mode
* Asks you questions to clarify intent
* You should be using Plan mode for any large changes

* Agent

* “Implement this feature...
 Edit

* “Just change this”

* Limited Context, but you know exactly what needs to change

) «u

Fix the failing tests”

* Set of Markdown files to define your team’s/organization’s rules
e “Don’t use Arrange, Act, Assert comments in tests”

* “Create me an Instructions file” - your Al tool can create this based on
the patterns in your codebase

* Tip: anything the agent does wrong? Add it to your Instructions
* This is key

¢ Formatting

) F ro m Apply code-formatting style defined in .editorconfig .
Prefer file-scoped namespace declarations and single-line using directives.

Insert a newline before the opening curly brace of any code block (e.g., after if , for , while, foreach , using, try, etc.).
Ensure that the final return statement of a method is on its own line.

Use pattern matching and switch expressions wherever possible.

Use nameof instead of string literals when referring to member names.

Place private class declarations at the bottom of the file.

Nullable Reference Types

* Declare variables non-nullable, and check for null at entry points.

o Always use is null or is not null instead of == null or != null.

 Trust the C# null annotations and don't add null checks when the type system says a value cannot be null.
Building

Always run restore first to set up the local SDK. Run ./restore.sh (Linux/macQOS) or ./restore.cmd (Windows) first to install the local
SDK. After restore, you can use standard dotnet commands, which will automatically use the local SDK when available due to the paths
configuration in global.json.

Prerequisites

1. Restore First: Always run ./restore.sh (Linux/macOS) or ./restore.cmd (Windows) to set up the local .NET SDK (~30 seconds)

Build Commands

e Full Build: ./build.sh (Linux/macOS) or ./build.cmd (Windows) - defaults to restore + build (~3-5 minutes)

e Build Only: ./build.sh ——build (assumes restore already done)

IHS'I'IIIIBTIIIHS

g y & .
Ve g -
< «
' = ‘
’r "
.
I I :
* BB
o -

imgflip.com

* Every tool now respects AGENTS.md in the root
e .cursorrules, .cursor/rules

 CLAUDE.md

* GEMINI.md

e .github/instructions/copilot-instructions.md

HOW STAN PROUFERATE:
(<8 AC CHARGERS, w EI‘HZEHES INSTANT FEHEHE, ETC)

1?7 RDIcCULoLS] -ME
WE NEED To DEVELOP

. || ONE UNIVERSAL STANDARD
SITUATON: | | Tar covers Everyones | | SITUATION:

THERE ARE

* Rather than loading all those Instructions into context every time,
what if we just did it selectively as needed?

 Saves context, saves tokens, saves money
o .github/skills/<skill name>/SKILL.md

e .claude/skills/<skill name>/SKILL.md
* Recognized by Copilot too

* Just became a thing in October
* https://github.com/anthropics/skills

https://github.com/anthropics/skills
https://github.com/anthropics/skills

skills > frontend-design > # SKILL.md
name: frontend-design
description: Create distinctive, production—-grade frontend interfaces with high design quality. Use this skill when
user asks to build web components, pages, artifacts, posters, or applications (examples include websites, landing
pages, dashboards, React components, HTML/CSS layouts, or when styling/beautifying any web UI). Generates creative,
polished code and UI design that avoids generic AI aesthetics.
License: Complete terms in LICENSE.txt

This skill guides creation of distinctive, production-grade frontend interfaces that avoid generic "AI slop"
aesthetics. Implement real working code with exceptional attention to aesthetic details and creative choices.

The user provides frontend requirements: a component, page, application, or interface to build. They may include
context about the purpose, audience, or technical constraints.

L.buti
Puttin

to Ver

Good

Configuration

Baseline

Skill (default behavior)

Skill with explicit instructions

AGENTS.md

s according

https://vercel.com/blog/agents-md-outperforms-skills-in-our-agent-evals
https://vercel.com/blog/agents-md-outperforms-skills-in-our-agent-evals
https://vercel.com/blog/agents-md-outperforms-skills-in-our-agent-evals

e Agents can run in the browser, not just on your machine
e Assign it a task or issue, watch progress (if you want), review the PR

 Create specialized agents for certain tasks — just more Instructions
files

* Practical tip: Feature Toggle Remover agent
* This isn’t coming to Azure DevOps

* Copilot Code Reviews — you should be doing this
e ~70% of the comments are valid in my experience
* This isn’t coming to Azure DevOps either

* Plan extensively so you can “1 shot”
* Most Plans only take a few minutes to create
* Planning will ask you clarifying questions

* Tip: When it creates “tasks” —ask it to add a validation line on how it
validates it’s done with the task

e Put your agent in a while loop, because agents can be lazy
e Ralph Wiggum
* Copilot Autopilot for CLI — just released last week

* Tight Feedback loops are extremely important — how does Al know
it’s done?

* Validation lines | mentioned during Plan Mode
* Compiling, Tests, Linting, Formatting
* These are important without Al!

* Multi-agent workflows, Ul orchestrating CLIs, with Editor built-in
* OpenAl Codex just dropped on Monday that is exactly this

* VVS Code did yesterday

* The bottleneck is moving from writing code to reviewing code

* VVoice, 120WPM speaking vs 40WPM typing

* The best Al-infused devs | know today spend 80-90% of their day
reviewing code, not writing it

* Context window expanding

CHAT + @3

STORING FAVORITE MEAL PLANS FEATURE REQUEST SESSIONS Rmm Secondary Side Bar Size

New Session
add a feature for storing favorite meal plans
IN PROGRESS

v Working... C mmmmm B
Thinking... @ now

TODAY

I'll research the codebase to understand the current meal plan structure and existing patterns before creating a plan.

@ help me design the data model for share...
Read migrate-add-shared-with.js ¥ now

add testing framework
Completed in 9 mins. i* 8 hrs ago

® write the sgl migration to add a shared_...
Completed in 1 mins. @ 8 hrs ago

YESTERDAY

Inquiry about upgrading to the latest ver...
Completed in 22s. €2 17 hrs ago

LAST WEEK

Document application features and proj...
4291 -49 & 2 days ago

add a single view to list past meals and t...
Completed in 2 mins. 1% 2 days ago

: :COMIO
® 2 Add Context... Improving App Accessibility Features

putﬁne the goal or problem to research Completed in 1 mins. GJ 2 days ago

Z&B © Local v = Plan v Claude Opus 45§ Ul Design: Creating a Muted Aesthetic

e Start using Instructions

* Any time it does something you don’t want — add it to instructions
e Automatically add Copilot Code Reviews (if you’re on GitHub)

e Start with Plan mode — add validation for when it’s complete

e Use your tools to do more than generate code:
* Estimation
* Create stories
* Understand code

* If unsure what model to use — pick a Claude one, prefer Opus 4.5 (for
now) if you don’t mind the premium requests

e Just this week
 Monday - OpenAl released Codex for managing multiple agents
* Wednesday - VS Code released support for managing multiple agents

* Anthropic was supposed to release Sonnet 5, but delayed... maybe it
released during this talk

* Follow people on Twitter / LinkedIn
e @bcherny — Boris Cherny who created Claude Code

e @leeerob — Lee Robinson, Cursor

* @code —VS Code

* @claudeai — Claude

e @housecor — Cory House, consultant

* |deas on where Al is and where it’s going

* |deas you can start using literally today

* Now’s the time to jump in, because the productivity is real

* “Change has never been this fast but will never be this slow again.”

Resources

* This slide deck at https://scottsauber.com

@scottsauber

https://scottsauber.com/

Add me on LinkedIn:

Questions? FaLeE
ssauber@Ileantechniques.com J@.I:E'Iﬂ'ﬂ;

@scottsauber

Slides at scottsauber.com 3¢ @scottsauber.com

Add me on LinkedIn:

Thanks!

Slides at scottsauber.com

	Slide 1: Practical AI Tooling Tips For The Too Busy Developer
	Slide 2: Audience
	Slide 3: Poll
	Slide 4: Agenda
	Slide 5: Goals
	Slide 6: Who am I?
	Slide 7: Am I going to be out of a job?
	Slide 8: History Lesson (2000s – Present)
	Slide 9: Which ones are still relevant in an AI-dominated world?
	Slide 10: History Lesson (2000s – Present)
	Slide 11: The Fundamentals Remain The Same
	Slide 12: Jevon’s Paradox
	Slide 13: “SaaS is Dead.” - Satya Nadella, Microsoft CEO
	Slide 14: These tools are the worst they will ever be today.
	Slide 15: Alright let’s talk AI Tools
	Slide 16: AI is an Amplifier
	Slide 17: Large Language Models
	Slide 18: Context
	Slide 19: AI Dev Tools
	Slide 20: Modes
	Slide 21: Instructions
	Slide 22: Instructions
	Slide 23
	Slide 24: Instructions Everywhere
	Slide 25
	Slide 26: Skills
	Slide 27: Skills
	Slide 28: In theory Skills should be just as good…
	Slide 29: Copilot Coding Agent (and friends)
	Slide 30: Demo
	Slide 31: Code Reviews
	Slide 32: Demo
	Slide 33: Workflow
	Slide 34: Demo
	Slide 35: Autonomous Modes
	Slide 36: Where’s it going
	Slide 37
	Slide 38: Quick Hitters To Use Today
	Slide 39: Things are changing ALL THE TIME
	Slide 40: How do I stay up to date?
	Slide 41: Takeaways
	Slide 42: Resources
	Slide 43: Questions? ssauber@leantechniques.com
	Slide 44: Thanks!

